Z-Selective Olefin Metathesis on Peptides: Investigation of Side-Chain Influence, Preorganization, and Guidelines in Substrate Selection
نویسندگان
چکیده
Olefin metathesis has emerged as a promising strategy for modulating the stability and activity of biologically relevant compounds; however, the ability to control olefin geometry in the product remains a challenge. Recent advances in the design of cyclometalated ruthenium catalysts has led to new strategies for achieving such control with high fidelity and Z selectivity, but the scope and limitations of these catalysts on substrates bearing multiple functionalities, including peptides, remained unexplored. Herein, we report an assessment of various factors that contribute to both productive and nonproductive Z-selective metathesis on peptides. The influence of sterics, side-chain identity, and preorganization through peptide secondary structure are explored by homodimerization, cross metathesis, and ring-closing metathesis. Our results indicate that the amino acid side chain and identity of the olefin profoundly influence the activity of cyclometalated ruthenium catalysts in Z-selective metathesis. The criteria set forth for achieving high conversion and Z selectivity are highlighted by cross metathesis and ring-closing metathesis on diverse peptide substrates. The principles outlined in this report are important not only for expanding the scope of Z-selective olefin metathesis to peptides but also for applying stereoselective olefin metathesis in general synthetic endeavors.
منابع مشابه
Recent Advancements in Stereoselective Olefin Metathesis Using Ruthenium Catalysts
Olefin metathesis is a prevailing method for the construction of organic molecules. Recent advancements in olefin metathesis have focused on stereoselective transformations. Ruthenium olefin metathesis catalysts have had a particularly pronounced impact in the area of stereoselective olefin metathesis. The development of three categories of Z-selective olefin metathesis catalysts has made Z-ole...
متن کاملZ-Selectivity in olefin metathesis with chelated Ru catalysts: computational studies of mechanism and selectivity.
The mechanism and origins of Z-selectivity in olefin metathesis with chelated Ru catalysts were explored using density functional theory. The olefin approaches from the "side" position of the chelated Ru catalysts, in contrast to reactions with previous unchelated Ru catalysts that favor the bottom-bound pathway. Steric repulsions between the substituents on the olefin and the N-substituent on ...
متن کاملChelated ruthenium catalysts for Z-selective olefin metathesis.
We report the development of ruthenium-based metathesis catalysts with chelating N-heterocyclic carbene (NHC) ligands that catalyze highly Z-selective olefin metathesis. A very simple and convenient procedure for the synthesis of such catalysts has been developed. Intramolecular C-H bond activation of the NHC ligand, promoted by anion ligand substitution, forms the appropriate chelate for stere...
متن کاملAlkene chemoselectivity in ruthenium-catalyzed Z-selective olefin metathesis.
Chelated ruthenium catalysts have achieved highly chemoselective olefin metathesis reactions. Terminal and internal Z olefins were selectively reacted in the presence of internal E olefins. Products were produced in good yield and high stereoselectivity for formation of a new Z olefin. No products of metathesis with the internal E olefin were observed. Chemoselectivity for terminal olefins was ...
متن کاملRu-Based Z-Selective Metathesis Catalysts with Modified Cyclometalated Carbene Ligands.
A series of cyclometalated Z-selective ruthenium olefin metathesis catalysts with alterations to the N-heterocyclic carbene (NHC) ligand were prepared. X-Ray crystal structures of several new catalysts were obtained, elucidating the structural features of this class of cyclometalated complexes. The metathesis activity of each stable complex was evaluated, and one catalyst, bearing geminal dimet...
متن کامل